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We report the first, to the best of our knowledge, ex-
perimental realization of high-quality dark and antidark
diffraction-free beams, first theoretically proposed by
Ponomarenko et al. [Opt. Lett. 32, 2508 (2007)]. Our
method employs a single spatial light modulator (SLM)
and is based on superposing mutually uncorrelated but
spatially coherent in the time domain Bessel modes with
modal weights proportional to the SLM display times of
the corresponding modes. We also experimentally verify
diffraction-free properties of the generated beams upon their
free space propagation. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.002260

To date, the most extensively studied partially coherent sources
are of the so-called Schell-model type which give rise to uni-
formly correlated partially coherent beams [1]. The Schell-
model sources can be readily realized in the laboratory using
random phase spatial light modulators [2], or taking advantage
of coherence shaping of free space propagating beams generated
by incoherent light sources [1].

Although theoretical exploration of non-uniformly correlated
partially coherent sources was initiated more than a decade ago
[3], only a few examples of such sources have been studied in
detail to date [3–6]. This is because laboratory realization of non-
uniformly correlated partially coherent beams has met formidable
difficulties. In fact, only one class of non-uniformly correlated par-
tially coherent beams, composed of just two uncorrelated coherent
modes, was experimentally realized very recently [7].

However, recent years have witnessed tremendous progress
toward the experimental synthesis of partially coherent sources
[8–15]. In particular, several approaches have been advanced to
engineer non-uniformly correlated sources via linear superpo-
sitions of uncorrelated coherent modes. Specifically, the original
non-uniformly correlated partially coherent source with a sepa-
rable phase [3] was synthesized through a linear superposition
of uncorrelated Laguerre–Gaussian modes by the Korotkova

group [16]. Further, Ostrovsky et al. reported the experimental
realization of a class of non-uniformly correlated diffraction-
free partially coherent sources employing a specially designed
Fourier transforming optical system with a spatial light modu-
lator (SLM) [6]. The non-uniformly correlated sources of [6]
are composed of diffraction-free Bessel modes with different
wavenumbers and the same mode index. Interestingly, partially
coherent dark and antidark diffraction-free sources, introduced
by Ponomarenko and co-workers some time ago [4], are com-
prised of Bessel modes with an identical wavenumber but dif-
ferent mode indices. To the best of our knowledge, dark and
antidark diffraction free beams have never been experimentally
realized. We stress that the method of [6] is inapplicable to
generating such sources because the angular spectra of the con-
stitutive Bessel modes are not separable in a Fourier space.

In this Letter, we report the first, to the best of our knowl-
edge, generation of dark and antidark diffraction-free sources us-
ing the coherent-mode superposition of Bessel modes. Each
individual mode is generated by a laser beam, transmitted
through a computer-generated hologram (CGH) loaded to an
SLM. Dark or antidark diffraction-free beams are then obtained
by averaging over temporal sequences of their coherent modes.
We note that the weight of an individual mode in the superpo-
sition is proportional to the display time of the mode and is not
interpreted as the probability of the mode appearance, thereby
distinguishing our approach from that of previous work [6].

Let us first briefly review the salient features of dark/antidark
diffraction-free sources [4]. The authors of [4] showed that
the cross-spectral density of dark and antidark diffraction free
beams, generated by such sources, takes the form

W � ρ1, ρ2� � J0�βjρ1 − ρ2j� � αJ0�βjρ1 � ρ2j�, (1)

where ρ1 and ρ2 are two arbitrary position vectors in the trans-
verse plane of the beam; α and β are two real constants, and J0
is a Bessel function of the first kind and order zero. Notice that
the cross-spectral density is independent of the propagation dis-
tance z from the source, highlighting the diffraction-free nature
of the beams. The analysis reveals that whenever α < 0,
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the spectral density of the beam has a dark notch on the axis
against a bright background halo, whereas the case α > 0 cor-
responds to the beam spectral density attaining a maximum
(antidark bump) on top of a bright background.

Further, applying the following summation theorem for the
Bessel functions,

J0�βjρ1� ρ2j� �
X∞

m�−∞
��1�meim�ϕ2−ϕ1�Jm�βρ1�Jm�βρ2�, (2)

with �ρi,ϕi� (i � 1, 2) standing for the polar coordinates, we
obtain for the cross-spectral density of our dark/antidark beams
the following coherent mode representation:

W � ρ1, ρ2� �
Xm�N

m�−N

λmψ
�
m� ρ1, z�ψm� ρ2, z�, (3)

Here N denotes the number of modes that approaches infinity

in theory; ψm�ρ, z� � Jm�βρ�eimϕeiz
ffiffiffiffiffiffiffiffi
k2−β2

p
are the Bessel

modes of the order m, and the mode weights are given by
the expression [4]

λm � 1� �−1�mα: (4)

We infer at once that Eq. (3) constitutes a coherent mode rep-
resentation of any physically realizable dark/antidark diffraction
free beam, provided the magnitude of α is less than unity to
guarantee non-negative definiteness of the cross-spectral den-
sity. Note also that each mode is an exact solution to the

Helmholtz equation and z-dependent phase factors eiz
ffiffiffiffiffiffiffiffi
k2−β2

p

have no effect on the beam cross-spectral density as they cancel
out for each product of a coherent mode function and its com-
plex conjugate entering the superposition of Eq. (3).

Let us now turn our attention to the experimental realization
of the just described dark and antidark diffraction-free beams. In
Fig. 1, we sketch our experimental setup. A linearly polarized
He–Ne laser beam (λ � 632.8 nm), transmitted through a
neutral density filter (NDF) and a beam expander (BE), was re-
flected by a mirror (RM) prior to arriving at a transmission only
SLM (Holoeye 2008) with 1024 × 768 pixels (pixel sizes
36 μm × 36 μm). The SLM acted as a phase screen (hologram)
used to generate coherent Bessel modes. The generated Bessel
beam quality directly affected the quality of partially coherent
beams. As ideal Bessel beams carrying infinite energy, which can-
not be experimentally realized, their truncated counterparts were
employed. To this end, we softly apertured ideal Bessel beams

with a Gaussian filter function, yielding approximately non-
diffracting Bessel–Gauss beams.

To produce high-quality Bessel beams with this holographic
technique, we followed the procedure of [17]. We computed a
phase pattern for converting a plane wave into a Bessel beam of
the order m according to the prescription, φ�ρ� � mφ�
πH 	 Jm�βρ�
, whereH stands for a unit step-function. We then
imparted a phase shift of k0x to the computed phase with a
blazed phase grating with the grating frequency k0. As the result-
ing phase pattern was loaded to the SLM, the phase value fell
into the interval between 0 and 2π. In Figs. 2(a) and 2(b),
we illustrate typical phase patterns for thus generated Bessel
modes with the mode indices m � 4 and 10, respectively.
The first diffraction order of SLM was regarded as our Bessel
mode. To ensure only the first-order diffracted beam reaches
a CCD, we placed a circular aperture—not shown in the sche-
matics of Fig. 1—to block the unwanted light. The CCD was
placed right after the aperture to record the beam patterns.

In Figs. 2(c) and 2(d), we present the normalized intensity
distributions of Bessel beams with m � 4 and 10 captured by
the CCD. We also display the intensity distribution at the cross
line (y � 0) in and the corresponding theoretical fit with ideal
Bessel modes in Figs. 2(e) and 2(f ) for comparison. We observe
that the experimental results are virtually indistinguishable
from the theoretical ones, at least up to the fourteenth concen-
tric ring away from the beam center. Outside the fourteenth
concentric ring, though, the measured mode intensity decays
much faster than that predicted by the theory. This discrepancy
is caused by our using Gaussian apertured Bessel modes in the
experiment as opposed to the ideal Bessel modes. We can also
infer the transverse wavenumber β magnitude from a theoreti-
cal fit is about 0.00245 k. This parameter can be changed
through re-designing the phase grating.

Fig. 1. Experimental setup for generating dark and antidark diffraction-
free beams. NDF, neutral density filter; BE, beam expander; RM, reflect-
ing mirror; SLM, spatial light modulator; PC, personal computer.

Fig. 2. (a) and (b) Phase patterns loaded to the SLM for generating
softly apertured Bessel beams with m � 4 and m � 10; (c) and
(d) Experimental results for the generated Bessel beams captured
by the CCD; (e) and (f ) cross lines for the generated beams at
y � 0 and the corresponding theoretical fit.
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After generating a series of Bessel modes of different ordersm,
we can now synthesize dark or antidark diffraction-free beams
through incoherent superpositions according to Eq. (3). Previous
numerical estimates indicate that a superposition of the first 51
modes (N � 25) gives a reasonably good approximation to a
theoretical dark/antidark beam in the vicinity of the first beam
notch/peak [4]. In the experiment, we chose N � 31, i.e., 63
Bessel modes of different orders were employed. Accordingly, we
synthesized 63 phase patterns in the computer and loaded them
to the SLM by rolling animation. In Fig. 3, we sketch the phase
pattern loading sequence. At each time step, the chronologically
earliest screen was removed from the computer memory and re-
placed by a new screen. The display time of each pattern was
proportional to the desired mode weight factor λm. Thus, in
our approach, we can readily control the mode weights through
adjusting the display time of each phase pattern. The average
frame per second (fps) rate of the phase pattern sequence loaded
to the SLM was about 30 s−1, which is lower than the maximum
SLM refreshing rate of 60 Hz. We then obtained the dark/
antidark diffraction-free beam intensity by averaging over the
picture sequences of the Bessel modes captured by the CCD.
The number of pictures used in the experiment was about
1200, and the averaging was performed offline.

In Figs. 4(a)–4(d), we present the density plots of the
generated antidark (α � 1.0, 0.5) and dark (α � −0.5, −1.0)
diffraction-free beam intensity distributions in the source plane.
In Figs. 4(e) and 4(f), we also exhibit the experimentally obtained
intensity distributions at the cross line (y � 0) and the corre-
sponding theoretical results calculated from Eq. (3) by taking
ρ1 � ρ2 withN � 31. As is evidenced by Fig. 4, for the positive

values of α, 1.0 or 0.5, the intensity pattern displays a bright spot
at the center, surrounded by several relatively dark concentric
rings, while the intensity between the adjacent rings does not fall
all the way to zero. Rather, the beam appears to reside on a uni-
form plane wave background, which is a signature of an antidark
beam. As the value of α decreases, the solid bright core gradually
disappears, and the uniform background brightness is enhanced.
Eventually, as the limiting value α � −1 is attained, the intensity
at the beam center reaches zero as the antidark beam turns into a
dark one.

We infer from Figs. 4(e) and 4(f ) that our experimental re-
sults agree quite well with the theoretical ones. Outside the
tenth ring, though, the intensity decays much faster than pre-
dicted by the theory and the concentric rings gradually disap-
pear. This is the consequence of our using a finite number of
Bessel modes in the experiment to approximate the ideal theo-
retical dark/antidark diffraction-free beams composed of an in-
finite number of modes. The agreement between the theory
and experiment is excellent, however, in the most interesting
region near the beam axis.

To verify the non-diffractive nature of the generated beams,
we plot the experimental results for the normalized beam in-
tensity distributions with α � 1 and α � −1 at three propaga-
tion distances, as seen in Figs. 5 and 6. As is expected, the beam
shape and size remain nearly invariant after the propagation

Fig. 3. Schematic illustration of the phase pattern sequence for
Bessel mode generation with the SLM.

Fig. 4. (a)–(d) Experimental results for the normalized antidark/
dark beam intensity patterns with α � 1.0, 0.5, −0.5, −1.0 in the
source plane; (e) and (f ) the intensity distribution along the line
y � 0 (red dashed–dotted) and the theoretical fit (solid).

Fig. 5. (a)–(c) Experimental results for the normalized beam inten-
sity distributions with α � 1 at several propagation distances from the
source plane; (d)–(f ) the cross line (y � 0) experimental intensity dis-
tribution (red dashed–dotted) and the theoretical fit (solid).

Fig. 6. (a)–(c) Experimental results for the normalized beam inten-
sity distributions with α � −1 at several propagation distances from
the source plane; (d)–(f ) the cross line (y � 0) experimental intensity
distribution (red dashed–dotted) and the theoretical fit (solid).
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distance of z � 1.1 m, with only a slight deviation from the
theory detectable toward the beam tail after the sixth consecu-
tive ring. If we are only interested in the region around the first
bright spot of the antidark beam with α � 1—the spot width is
about 0.08 mm—or the first notch vicinity of the dark beam
with α � −1, the corresponding regions of the realized beams
at distance z � 1.1 m are identical in shape and size to their
counterparts in the source plane. We point out, for compari-
son, that a fundamental Gaussian beam of the initial width
w0 � 0.08 mm at the same carrier wavelength will spread
to about three times its size in the source plane over the same
propagation distance.

In conclusion, we have experimentally realized dark and
antidark diffraction-free beams by designing uncorrelated
superpositions of Bessel modes with the aid of an SLM, and
we verified diffraction-free nature of the generated beams.
We controlled the weight of each mode in the coherent mode
representation of the beam cross-spectral density by adjusting
the SLM display time of specially engineered phase holograms.
Our method allows for a convenient transition from antidark to
dark diffraction-free beams. We note that our modal weight
control method is different from that reported in Ref. [16].
We also note that the present non-uniformly correlated beams
are very different from the recently introduced, and experimen-
tally realized, radially/circularly uniformly correlated partially
coherent beams composed of Bessel modes [18–20]. The dark
and antidark diffraction-free beams may find applications to
optical trapping and manipulation of atoms or micro-particles.
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